
Runtime Data
Collection
The Necessity of a Full-Stack Approach
for Achieving Comprehensive Security in
Modern Applications

Comprehensive data collection is paramount for
understanding, optimizing, and securing modern
applications. There are three methodologies for runtime  
data collection: Kernel-based, application-based, and API-
based. These techniques offer unique advantages allowing
security, development, and operations teams to gain insights
into various aspects of their systems. That said, each of
these methods has limitations and neither one provides
complete coverage on its own. Helios combines multiple
runtime data collection methods to provide context,  
granular data, and a comprehensive picture of the
application’s security posture in runtime.

Kernel-based data collection
eBPF, or Extended Berkeley Packet Filter, is a kernel
technology available since Linux 4.4. It allows developers to
run programs without adding additional modules or
modifying the kernel source code. Think of it as  
a lightweight, sandboxed virtual machine within the Linux
kernel that lets you hook into kernel calls and extract data in
an efficient and safe way.

Use case example:
Monitor incoming networki calls made by
processes, allowing for the early detection of
potential exploitations.

Limitations:

 Can’t be used in clusters without privilege mode - In
EKS Fargate and GKE Autopilot, running a container in
privileged mode, which is required for eBPF, is not
allowed, because the Kubernetes nodes are managed
by AWS/GCP.

 Can’t be used when there is no access to the Kernel,
like Lambdas.

 Hardened environments that don’t allow running as root.

Application-based data
collection
App-level instrumentation encompasses various techniques
across different languages and runtimes to gather data by
integrating with the application, often by adding code either
explicitly or implicitly. This typically involves replacing
function implementations at runtime with wrapped versions
that capture information about their executions, including
durations and return values. Modern methods have made
this process more transparent. Dynamic languages like
Node.js and Python allow script loading before the main
program starts, and Java's javaagent mechanism is used
for similar purposes.

Use case example:
App-level instrumentation: Using eBPF as the
instrumentation mechanism to gather telemetry data
for distributed tracing.

Limitations:
 Errors in the instrumentation can interfere with the

application.

 Not all languages support app-level instrumentation
without code changes to the application.

API-based data collection
Cloud provider APIs like AWS CloudWatch, and the Kubernetes
API provide a low-friction method for collecting data about cloud
deployments. These integrations are usually based on API key or
IAM integration, making them very easy to implement.

Use case example:
Extract all running Docker images from a K8s cluster

Limitations:

API-based data is limited in its nature. Runtime data is most
unavailable to them (e.g., knowing if a certain package is
loaded into memory or if a vulnerable function is invoked)

API

Kernel-based App-based API-based

Language agnostic

Platform agnostic Each platform has its
own APIs

Non-privileged

Low deployment friction Depends on platform
and language

App-level context Partial

Breadth of data

Comprehensive runtime data collection is essential for securing
applications and infrastructure. While each data collection method offers
unique advantages and insights into different aspects of the application,

they come with inherent limitations. To address these shortcomings, a
hybrid approach is crucial. Helios combines multiple data collection
methods, providing context, granular data, and a holistic view of an

application's security posture during runtime.

gethelios.dev

	Custom _ 210x297 mm
	Custom _ 210x297 mm-1

